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A.1 OLS and fixed effects estimation with an alternative project selec-

tion mechanism

In the paper we show results for OLS and FE estimation when DFIs randomly select projects

from their eligible set until the DFI budget runs out. Here, we consider an alternative where the

DFI sector, from its eligible set, first picks the projects with the worst project characteristics. This

alternative selection mechanism could be interpreted as DFIs attempting to (be seen to) fulfill a

mandate to do deals in difficult markets by prioritizing those projects that superficially look like

ones the private sector would avoid, for instance because these projects are located in countries

with generally weaker investment climates.1 For example, DFIs might prefer to invest in a project

in the DRC over one in Brazil if both projects offer the same risk-adjusted expected return. Table

A.1 shows results for our default DGP; the only difference with Table 1 is the project selection

mechanism. As rejection rates for the true nulls now sometimes deviate from 100%, we add these

to the table as well.

Consider first the zero additionality case (columns 1-4). As DFIs and private investors are

interested in the same pool of projects (whose returns exceed the common lower bound), the

rationale for an upward bias outlined in the paper still holds. However, by prioritizing, within this

eligible set, the projects with the weakest project characteristics, some DFI investment will flow to

country-periods with lower overall investment. This is because, in the global set of projects with

sufficient returns, the projects with the lowest values for pcpit are more likely to be drawn from

country-periods with low average returns and, hence, low private investment. This alternative

selection mechanism thus pushes against the upward bias. On balance, we may even end up with

1In our DGP, pcpit is a less noisy measure of a country’s type than erpit, since the latter contains an additional
project-specific component (epit).
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Table A.1: OLS and fixed effects results with an alternative DFI project selection mecha-
nism

(1) (2) (3) (4) (5) (6) (7) (8)
β 0 0 0 0 1 1 1 1
pc excl. σ2

m = 1 σ2
m = 0.5 σ2

m = 0 excl. σ2
m = 1 σ2

m = 0.5 σ2
m = 0

Mean β̂OLS −0.76 −0.10 0.08 0.16 −1.57 −0.62 0.18 0.91
Std. dev. 0.80 0.21 0.05 0.06 0.47 0.17 0.08 0.05
% reject β 6 0 11.2 16.4 64.5 100
% reject β > 1 100 100 100 86.1
Mean β̂FE −0.50 −0.06 0.11 0.20 −1.37 −0.60 0.13 0.90
Std. dev. 0.62 0.22 0.06 0.06 0.40 0.18 0.08 0.06
% reject β 6 0 12.7 21.2 70.9 100
% reject β > 1 100 100 100 88.4
Note: this table shows mean values and standard deviations of OLS and fixed effects estimates of β, based on 1000
replications of our DGP. % reject β 6 0 and % reject β > 1 are the percentages of replications in which the null of zero
additionality and the null of full additionality are rejected at a 5% significance level, respectively. DFIs first pick the
projects with the worst project characteristics from their eligible set. pc indicates when p̃cit is excluded (“excl.”) or,
when it is included, how much measurement error has been added to it.

a net downward bias. This is the case, for instance, in column 1, where project characteristics are

not controlled for. Rejection rates for zero additionality fall correspondingly compared to the

random project selection mechanism. The change in the size and even sign of the bias when we

vary how DFIs select projects further illustrates how the estimated degree of additionality can

reflect the particular way in which DFIs attempt to fulfill their mandate.

Under full additionality (columns 5-8), we find a similar downward bias as for random project

selection. The coefficients in this scenario are mostly determined by the two types of investors tar-

geting very different returns. Conditional on this, it matters less whether the DFI sector chooses

projects at random from its eligible set, or whether it first picks the projects with the worst ob-

servable characteristics.2

A.2 Supply-push IV

A.2.1 Additional discussion of endogenous DFI budgets

In our DGP, we assume that the global DFI budget is exogenous to give us a benchmark in which

the supply-push instrument is valid. As a result, the endogeneity of the instrument comes only

2The alternative selection mechanism does not always have a larger downward bias than the random selection

mechanism. The OLS bias, for instance, is given by 1
Cov(dfi⊥it ,#er>2⊥it )

Var(dfi⊥it )
, where ⊥ indicates that time dummies and,

when included, p̃cit have first been partialled out. #er > 2it is the number of projects with expected returns over two,
which enters the true model with a coefficient of one, and whose inclusion would completely remove the bias in the
estimation of β. The alternative selection mechanism tends to concentrate DFI investment in a smaller number of

(low-type) countries, in most cases increasing Var
(

dfi⊥it
)

and making Cov
(

dfi⊥it , #er > 2⊥it
)

more negative. The change
in the bias from switching from the random to the alternative selection mechanism then depends on whether the
absolute value of the covariance or variance rises the most proportionally.
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from endogenous reactions of individual DFI budgets combined with DFI-specific preferences for

some countries over others. In practice, however, the shared preference of DFIs for high (under

zero additionality) or low (under full additionality) returns could also make the IV estimator

inconsistent if the global DFI budget is a function of the number of projects DFIs are interested in.

An example can clarify. Suppose, in the zero additionality version of our DGP, that a few countries

experience positive shocks to uit that increase the amount of DFI investment they receive. As DFIs

respond to the increase in investment opportunities, the global DFI budget rises (Ddt increases

for most DFIs). If the countries that experience the positive shocks are also the ones with large

initial shares sd
i0, the instrument dfiIVit for these countries will increase in tandem with dfiit. As a

result, dfiIVit will be positively correlated with uit, again resulting in upward bias.

This also makes clear that, when DFI budgets respond endogenously to the number of in-

vestment opportunities, a likely tradeoff between instrument strength and validity surfaces. As

explained in the previous paragraph, if the shocks that attract more DFI investment occur in

countries with large initial shares sd
i0, the instrument becomes invalid. If, in contrast, the coun-

tries experiencing these shocks are the ones with low sd
i0, then the instrument will weaken as it

will fail to track the increase in actual DFI investment received by these countries.

A.2.2 Leave-one-out version of the instrument

To deal with feedback from an individual unit to the aggregate shifter, researchers often use

a leave-one-out version of their shift-share instrument. For our supply-push instrument, this

means replacing Ddt in equation (8) with
(

Ddt − dfid
it

)
, which is the amount of DFI d’s total

budget in t allocated to countries other than country i. In our set-up, this does not solve the

problem, however. In its first seven columns, Table A.2 repeats the results from Table 2 in the

main text. Recall that these results show how the endogeneity of DFIs’ budgets, introduced

by setting a positive value for φ, generates an upward bias in the supply-push IV estimator.

Column 8 establishes that applying the leave-one-out version of the instrument does not solve

the problem of endogenous budgets. This column shows that the leave-one-out IV estimator

yields a downward bias when it is applied to the configuration from column 5 (with φ = 1). Our

global DFI budget is exogenous, so it is not affected by shocks to countries’ investment returns.

As a result, when country i experiences a positive shock and receives more DFI investment, less

DFI investment is available for other countries, so that Ddt− dfid
it for country i might fall for many

DFIs. When this happens it can lead to a negative correlation between uit and the leave-one-out

version of the instrument, as is the case in column 8.
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Table A.2: Supply-push IV results with zero additionality (β = 0): leave-one-out version
of the instrument

(1) (2) (3) (4) (5) (6) (7) (8)
∆ types default fewer 1period fixed 1period 1period 1period 1period
φ 0 0 0 0 1 2 2 1
pc excl. excl. excl. excl. excl. excl. σ2

m = 0.5 excl.
σdb 0.15 0.15 0.15 0.15 0.15 0.15 0.05 0.15
Instrument standard standard standard standard standard standard standard leave1out

Med. β̂ IV 4.56 0.53 0.00 0.00 0.12 0.26 0.39 −0.52
Std. dev. 84.72 19.65 0.97 0.09 0.63 0.54 0.53 53.66
% reject β 6 0 68.6 43.3 8.2 4.7 15.9 27.4 29.7 4.1
Med. F 4.77 23.6 37.1 166 43.7 49.4 20.5 17.3
% reject underid. 53.4 72.9 97 100 98.8 99.7 97.4 77
Note: this table shows median values and standard deviations of IV estimates of β, based on 1000 replications of
our DGP. % reject β 6 0 is the percentage of replications in which the null of zero additionality is rejected at a 5%
significance level. The final two rows show the median cluster-robust first-stage F-statistic, and the percentage of
replications that reject underidentification at a 5% significance level. DFIs randomly select projects from their eligible
set. ∆types states how often types change over time: as given by transition matrix (3) (“default”); reduced probabilities
of transitions as in transition matrix (9) (“fewer”); transitions occur for one period only (“1period”); types are fixed
(“fixed”). pc indicates when p̃cit is excluded (“excl.”) or, when it is included, how much measurement error has
been added to it. Instrument denotes whether the standard version of the instrument is used or the leave-one-out
(“leave1out”) version.

A.2.3 Results with an upward trending budget

The situation with an upward trending DFI budget, considered in Table A.3, is slightly more

complicated than the case with a downward trending budget discussed in the paper.3 The differ-

ential evolution of total investment is similar: negative for initial high-type countries and positive

for countries that start out as low-type. In contrast, the upward trend in the budget leads to a

more rapid rise over time in the instrument for initial high-type countries than for initial low-type

countries. The opposing differential changes in total investment and the instrument result in a

negative reduced form coefficient in all but one replication in columns 1 and 2. In column 1, with

default type transitions, the majority of first stage coefficients are also negative, producing a pos-

itive median IV estimate. The first stage coefficient is so often negative because initial low-type

countries tend to see larger increases in DFI investment than countries that start out as high-type,

which is the opposite pattern as that for the instrument. The reason for this is that, while both sets

of countries benefit from the increasing DFI budget, when type transitions are frequent, low-type

countries tend to shift up type over time, further increasing their DFI investment, while countries

that start as high-type tend to shift down in type, which lowers their DFI investment.

When types change less frequently (column 2), the main difference is that DFI investment

tends to rise more quickly for initial high-type countries than for countries starting out as low-

3The upward drift we consider is smaller in size than the downward drift in the paper. This is to make sure that
the global DFI budget never exceeds the number of projects with an expected return over two.
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Table A.3: Supply-push IV results with zero additionality (β = 0): upward trend in the
DFI budget

(1) (2) (3) (4) (5)
drift 0.05 0.05 0.05 0.05 0.05
∆ types default fewer fixed default default
i.trend no no no yes no
pc excl. excl. excl. excl. σ2

m = 0.5

Med. β̂ IV 3.96 −2.66 0.00 0.86 −1.98
Std. dev. 7.10 693.04 0.03 5376.09 144.65
% reject β 6 0 90.1 7.5 6 31.5 1.7
Med. F 5.74 .545 422 1.67 1.02
% reject underid. 63 9.7 100 12.2 14.3
Med. FS −0.49 0.05 0.97 1.20 0.08
Med. RF −1.99 −1.01 0.00 0.95 −0.29
Note: see Table A.2. This table also shows median first stage (“FS”) and reduced form (“RF”) estimates. For all results
in this table σdb = 0. i.trend indicates in which columns time dummies have been replaced by country-specific trends.

type, because the former benefit more from the expansion of the DFI budget, and because the

reduction in type changes takes away most of the negative (positive) pressure on DFI investment

for initial high-type (low-type) countries. As a result, the differential changes in DFI investment

more often match those in the instrument, turning more of the first stage estimates positive and

more of the IV estimates negative, resulting in a downward bias in column 2. In column 3, with

fixed types, the bias again disappears as the median reduced form coefficient becomes zero.

Column 4 shows that, for the default transition mechanism, replacing time dummies by

country-specific trends is insufficient to fully remove the bias. Likewise, controlling for p̃cit (with

σ2
m = 0.5) in column 5 reduces the bias but does not eliminate it. For an upward trending global

DFI budget, controlling for p̃cit also turns more of the estimated first stage coefficients positive,

so that the median bias changes sign compared to the case without p̃cit.

A.2.4 Results under full additionality

The first four columns in Table A.4 examine how changing the type transition mechanism affects

instrument strength and bias under full additionality. As was the case for zero additionality,

restricting transitions to a single period in column 3 is sufficient to remove all bias. Proceeding

with this single period transition case, columns 5 and 6 show how setting φ > 0 introduces bias

that rises with the value of φ. As in the main text, the reason for this is the endogenous reaction of

overall DFI budgets to shocks to expected returns in countries that a DFI has a strong preference

for. Column 7 repeats the example from the main text to show that, even with p̃cit included (with

a small amount of measurement error: σ2
m = 0.5) a substantial bias may remain. Column 8 applies

the leave-one-out IV estimator to the configuration from column 5 (with φ = 1), showing a small
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upward bias. When a country experiences a negative shock and receives more DFI investment,

less DFI investment is available for other countries, so that Ddt − dfid
it might fall for many DFIs.

This can lead to a positive correlation between uit and the leave-one-out version of the instrument,

and an upward bias, as is the case in column 8.

Table A.4: Supply-push IV results with full additionality (β = 1)

(1) (2) (3) (4) (5) (6) (7) (8)
∆ types default fewer 1period fixed 1period 1period 1period 1period
φ 0 0 0 0 1 2 2 1
pc excl. excl. excl. excl. excl. excl. σ2

m = 0.5 excl.
σdb 0.15 0.15 0.15 0.15 0.15 0.15 0.05 0.15
Instrument standard standard standard standard standard standard standard leave1out

Med. β̂ IV −3.48 0.47 1.00 1.00 0.74 0.53 0.49 1.04
Std. dev. 209.64 106.80 8.40 0.50 1.36 0.96 0.57 998.41
% reject β > 1 57.3 36.5 8.2 5.5 15 23.8 29.3 14.3
Med. F 3.53 11.7 14.8 45.6 22.4 29.4 20.5 2.91
% reject underid. 46 72.1 85.1 98.5 97.5 99.4 99.5 42.2
Note: see Table A.2. % reject β > 1 is the percentage of replications in which the null of full additionality is rejected at
a 5% significance level.

Tables A.5 and A.6 explore how the combination of trends in the global DFI budget and

countries changing types can lead to bias. Table A.5 considers a negative trend. In column 1 we

consider default type transitions, while column 2 examines what happens with reduced probabil-

ities of type changes. In both cases, the median estimate is negative, suggesting a large downward

bias. Similar mechanisms as discussed in the main text are at play. With a downward trending

budget, under full additionality DFI investment falls most rapidly for countries that start out as

low-type, and the same goes for the instrument, generating a positive first stage relationship.

Total investment, however, falls most rapidly for countries that are initially high-type, producing

negative reduced form estimates. The combination of positive first stage estimates and negative

reduced form estimates yields negative IV estimates. Keeping types fixed again eliminates most

of the bias (column 3). Controlling for country-specific trends (column 4) or p̃cit (with σ2
m = 0.5,

column 5) does not get rid of the bias.

Likewise, in Table A.6, the biases for an upward trending budget are of the opposite sign as for

the zero additionality case discussed earlier. With fixed types (column 3), there is no differential

change in total investment by initial type, and the median IV estimate equals the true β.
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Table A.5: Supply-push IV results with full additionality (β = 1): downward trend in
the DFI budget

(1) (2) (3) (4) (5)
drift -0.1 -0.1 -0.1 -0.1 -0.1
∆ types default fewer fixed default default
i.trend no no no yes no
pc excl. excl. excl. excl. σ2

m = 0.5

Med. β̂ IV −8.29 −4.43 1.01 −3.42 −1.23
Std. dev. 2.62 2.00 0.29 3.57 1.57
% reject β > 1 96 91.3 5.9 42.5 59.8
Med. F 21.1 38.3 44.4 9.56 12.7
% reject underid. 98 99.8 100 100 90.3
Med. FS 0.86 0.82 0.73 1.19 0.55
Med. RF −7.15 −3.52 0.74 −3.99 −0.67
Note: see Table A.2. % reject β > 1 is the percentage of replications in which the null of full additionality is rejected
at a 5% significance level. This table also shows median first stage (“FS”) and reduced form (“RF”) estimates. For all
results in this table σdb = 0. i.trend indicates in which columns time dummies have been replaced by country-specific
trends.

Table A.6: Supply-push IV results with full additionality (β = 1): upward trend in the
DFI budget

(1) (2) (3) (4) (5)
drift 0.05 0.05 0.05 0.05 0.05
∆ types default fewer fixed default default
i.trend no no no yes no
pc excl. excl. excl. excl. σ2

m = 0.5

Med. β̂ IV −3.30 4.87 1.00 −2.07 1.73
Std. dev. 23.10 269.65 0.09 19.17 702.10
% reject β > 1 71.4 1 6.7 24.2 3.2
Med. F 2.99 1.41 92.9 1.04 .492
% reject underid. 37.9 22.9 100 1.6 5.6
Med. FS −0.63 0.28 0.80 1.07 0.06
Med. RF 2.19 1.93 0.80 −2.21 0.47
Note: see Table A.5.

A.3 System GMM

A.3.1 Main results

Difference GMM (Arellano and Bond, 1991; Holtz-Eakin et al., 1988) starts by differencing equa-

tion (1) to remove wi:

∆Iit = β∆dfiit + γ∆p̃cit + ∆δt + ∆uit (A.1)

followed by using suitably lagged levels of the variables as instruments within Hansen’s (1982)

GMM framework. System GMM (Arellano and Bover, 1995; Blundell and Bond, 1998) further

adds the equation in levels (equation (1)), instrumenting it with lagged differences of variables

(see Bond, 2002; Bun and Sarafidis, 2015; Roodman, 2009a, for excellent introductions). We im-
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plement these estimators using the xtabond2 command in Stata developed by Roodman (2009a).

We calculate one-step GMM estimates with cluster-robust standard errors. We treat dfiit and,

when included, p̃cit as endogenous. To avoid overfitting (Roodman, 2009b), we use only a single

lagged level of each variable as an instrument for the differenced equations. This yields the

following population moment conditions:4

E
[
dfii,t−2∆uit

]
= 0 E

[
p̃ci,t−2∆uit

]
= 0

E
[
∆dfii,t−1 (wi + uit)

]
= 0 E

[
∆p̃ci,t−1 (wi + uit)

]
= 0 (A.2)

To further counter overfitting, we also collapse the instrument matrix (Roodman, 2009a). Time

dummies are used as instruments in the levels equation only; their use as instruments in the

differenced equation is redundant. When the moment conditions in (A.2) hold, GMM is consistent

but not unbiased. Non-negligible bias can result from violated moment conditions or from weak

instruments, or from a combination of both.

Table A.7 reports median system GMM estimates of β, and their standard deviations. We

also include rejection rates for a (one-sided) t-test of the null of zero additionality, conducted

at a 5% significance level. Hansen % pass is the percentage of replications that do not reject

Hansen’s overidentifying restrictions test at a 10% significance level. The ability of this test to

pick up moment violations is hampered, however, by its low power (Bowsher, 2002). It also starts

from the assumption that there are enough valid moment conditions to identify the model’s

coefficients; if all moments are violated in similar ways, this test is unlikely to reject.5

Finally, we carry out a test for underidentification. We report the cluster-robust version of

the Sanderson and Windmeijer (2016) conditional first-stage F-statistic proposed in Windmeijer

(2018). This test assesses whether the instruments are strong enough to identify the parameter

of interest, β, specifically. This is the most relevant available test statistic for our purposes, as

Sanderson and Windmeijer (2016) show that, when there are multiple endogenous variables and

some are instrumented weakly, the coefficients of the variables that are instrumented strongly

are still estimated consistently. We include the median value of the test statistic, as well as the

percentage of replications that reject the null of underidentification at a 5% significance level.

Table A.7 shows results for the same default version of our DGP that was used in the first four
4Results using lagged levels in t− 2 through to t− 5 as instruments for the differenced equations are qualitatively

similar, with larger biases.
5The difference-in-Hansen tests we conducted to shed light on the validity of specific subsets of moments are not

very informative, so we do not report them. The same goes for Arellano and Bond’s (1991) m2 test, whose results do
not vary much across experiments and tend to indicate no serial correlation in uit in the vast majority of replications.
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Table A.7: System GMM results with zero additionality (β = 0)

(1) (2) (3) (4) (5) (6) (7) (8)
LDV no no no no yes yes yes yes
pc excl. σ2

m = 1 σ2
m = 0.5 σ2

m = 0 excl. σ2
m = 1 σ2

m = 0.5 σ2
m = 0

Med. β̂sysGMM 3.59 0.58 0.15 0.02 0.50 0.42 0.20 0.02
Std. dev. 0.97 1.44 0.96 0.35 1.55 1.11 0.80 0.30
% reject β 6 0 100 25.6 13.3 5.3 24.2 20.5 12.3 6.4
Hansen % pass 33.3 86.8 91.2 91.7 80.8 90 91.5 91.7
Med. cond. F 32.7 8.92 13.8 17.9 11.3 7.92 10.4 17.2
% reject underid. 100 54.8 69.7 76 64.8 42.8 53.4 72.1
Note: this table shows median values and standard deviations of system GMM estimates of β, based on 1000 repli-
cations of our DGP. % reject β 6 0 is the percentage of replications in which the null of zero additionality is rejected
at a 5% significance level. Hansen % pass is the percentage of replications that do not reject Hansen’s overidentifying
restrictions test at a 10% significance level. The final two rows show the median cluster-robust conditional F-statistic,
and the percentage of replications that reject underidentification at a 5% significance level. DFIs randomly select
projects from their eligible set. LDV indicates whether a lagged dependent variable is included. pc indicates when p̃cit
is excluded (“excl.”) or, when it is included, how much measurement error has been added to it.

columns of Table 1 (reverting to a single DFI: nD = 1). In the regression without p̃cit (column

1), underidentification is rejected in every replication, but the Hansen test also often rejects, and

system GMM is unable to remove the upward bias in the estimation of β. The reason for this is

that, in our DGP, the moment conditions in (A.2) are not satisfied. The main culprit for this are

changes in country types.

First consider the moment conditions associated with the differenced equation. A country

that is low-type in t − 2 will receive little DFI investment in this period, because it generates

few projects with a sufficient expected return. For this country, the only way is up: it either

remains low-type, or it moves up a type (or two), leading to increases in the number of investable

projects and the amount of DFI investment. The converse applies to high-type countries. In the

real world, a country with few appealing investment projects will not be much affected if its

investment climate remains unchanged or even further deteriorates, whereas an improvement in

its investment climate will increase the number of projects that are attractive to investors seeking

high returns. The consequence is that Corr
(

dfii,t−2, ∆dfiit

)
< 0 but also that Corr

(
dfii,t−2, ∆uit

)
<

0, where ∆uit contains the change in the number of projects with a sufficient expected return as

an omitted variable in the differenced equation.6

A similar story applies to the levels equation. If a low-type country moves up types in t− 1, its

DFI investment increases, and, since types are persistent, it is also likely to end up with a larger

number of projects with high expected returns in period t, implying that Corr
(

∆dfii,t−1, dfiit

)
> 0

6From the probabilities in transition matrix (3) it can easily be verified that, for a country that is low-type in t− 2,
the likelihood of moving up a type between t− 1 and t (so that ∆uit > 0) exceeds the likelihood of moving down a
type. Likewise, for a high-type country in t− 2, a downward shift in type between t− 1 and t is more likely than an
upward shift. The correlations discussed in the text can be calculated from the data generated by our DGP, since we
can measure wi + uit as the number of projects with sufficient expected returns, and ∆uit as the change in this variable.

9



but also that Corr
(

∆dfii,t−1, wi + uit

)
> 0. Trends in the DFI sector’s budget can also give rise to

violations of the moment conditions in the levels equation, even when types are time-invariant.

For instance, if the global DFI budget trends upwards, high-type countries benefit most from this,

generating a positive correlation between ∆dfii,t−1 and wi.

As was the case for the other estimators, including p̃cit, especially without measurement error,

reduces bias (columns 2-4 in Table A.7). p̃cit partially controls for the number of projects with

sufficient expected returns, weakening the correlations between instruments and error terms.

Table A.7 makes clear, however, that there is nothing inherent in system GMM that removes the

bias in the estimation of β. The good performance of the estimator in column 4 depends on the

availability of a control variable that almost perfectly predicts where investments will take place.

Without such a control, system GMM clearly returns a bias.

In the final four columns of Table A.7 we show that this conclusion holds when we add Ii,t−1

as a covariate. The inclusion of a lagged dependent variable is typical in system GMM estima-

tion; one reason for this is to remove serial correlation in uit, which would otherwise invalidate

the moment conditions. As is common, we treat Ii,t−1 as predetermined, exploiting moment con-

ditions E [Ii,t−2∆uit] = 0 and E [∆Ii,t−1 (wi + uit)] = 0. The main change from including Ii,t−1 is

lower bias in the model without p̃cit.

A.3.2 Additional results

In Table A.8 we report four additional experiments to give further insight into the performance

of the system GMM estimator. For each experiment we first report results from a regression that

excludes p̃cit, then from a regression that includes p̃cit with the smallest amount of measurement

error added to it (σ2
m = 0.5). We now also show median difference (β̂di f f GMM) and levels (β̂levGMM)

GMM estimates, obtained by separately estimating the differenced and levels equations, as these

will prove useful to interpret the findings of one of the experiments in this table.

We first demonstrate that our findings do not depend on the particular formulation of the

DFI sector’s budget in the default version of our DGP. In columns 1-2, we remove the stochastic

element in the DFI budget by setting σdb = 0, and replace it with a deterministic upward trend

(drift = 0.05). This mimics the rise in DFI investments seen over the past two decades or so

(Runde and Milner, 2019). The upward trending budget will also prove useful for one of the later

experiments. As was the case before, system GMM suffers from an upward bias.

In our default set-up countries of different types have very different probabilities of receiving

DFI investment. Given the crucial role played by changes in types for the violation of the moment
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Table A.8: System GMM results with zero additionality (β = 0): additional experiments

(1) (2) (3) (4) (5) (6) (7) (8)

Experiment
description

Upward trend
in DFI budget

µc closer
together

µc the
same

Upward trend
in DFI budget,

fixed types
pc excl. σ2

m = 0.5 excl. σ2
m = 0.5 excl. σ2

m = 0.5 excl. σ2
m = 0.5

σdb 0 0 0.15 0.15 0.15 0.15 0 0
drift 0.05 0.05 0 0 0 0 0.05 0.05
µc [0, 2, 4] [0, 2, 4] [1, 2, 3] [1, 2, 3] [2, 2, 2] [2, 2, 2] [0, 2, 4] [0, 2, 4]
∆ types default default default default default default fixed fixed

Med. β̂sysGMM 2.58 0.07 3.53 0.59 0.53 0.48 1.17 0.02
Std. dev. 0.26 0.35 2.06 1.76 3.21 1.53 0.05 0.13
% reject β 6 0 100 10.5 98.2 20.9 3.5 5.1 100 8.7
Hansen % pass .2 91.1 64.6 89.2 94.4 97.5 0 89.5
Med. cond. F 40.4 20.9 14.9 5.44 1.44 1.88 40.3 33.8
% reject underid. 100 97.5 91.7 35.5 3.5 2.5 100 100
Med. β̂di f f GMM 3.69 0.73 4.30 1.30 0.54 0.64 0.00 0.00
Med. β̂levGMM 2.92 0.46 4.22 1.32 0.65 0.60 2.00 1.19
Note: see Table A.7. The final two rows report the median value of difference and levels GMM estimates of β. Types
change over time (“∆ types”) according to the transition matrix (3) (“default”) or are time-invariant (“fixed”). For ease
of interpretation, the top row shows a brief description of the experiment considered.

conditions in (A.2), it is important to see whether the bias in system GMM can be removed by

narrowing the gap in average expected returns between types. By making types more similar, the

correlation between lagged DFI investment and contemporaneous changes in the number of high

return projects should weaken; and likewise for the correlation between lagged changes in DFI

investment and the current number of projects with sufficient expected returns. We first change

mean pcpit for the three types from µc = [0, 2, 4] to µc = [1, 2, 3], then also consider a case where

average project characteristics are equal to 2 regardless of a country’s type (µc = [2, 2, 2]).

Looking at the model without p̃cit, we can see changes in results that are consistent with

a weakening of violations of the moment conditions: bringing average returns closer together

reduces the Hansen test’s rejection rate from around 67% in column 1 of Table A.7 to 35.4%

in column 3 of Table A.8, while setting µc = 2 for all types further reduces the rejection rate

to around 5% (column 5 in Table A.8). Nonetheless, compared to the default set-up in Table

A.7 there is almost no reduction in bias from bringing average returns closer together, and even

when all types are the same, so that the moment conditions in (A.2) should be satisfied, the

GMM estimators still display bias. The reason for this is that a movement of Corr
(

dfii,t−2, ∆uit

)
and Corr

(
∆dfii,t−1, wi + uit

)
towards zero is matched by a weakening of Corr

(
dfii,t−2, ∆dfiit

)
and

Corr
(

∆dfii,t−1, dfiit

)
: as lagged levels and differences of DFI investment are no longer correlated

with current changes in, and levels of, the number of projects with sufficient returns, they also

lose their ability to predict contemporaneous changes in, and levels of, DFI investment. When
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µc = 2 for all types, the instruments have no strength left, and underidentification is rejected in

fewer than 5% of the replications. The upshot is bias due to weak instruments. When we add p̃cit

to the model (column 6), the bias barely changes, because the additional instruments based on

lagged levels and differences of p̃cit are also uninformative.

These results suggest that changes in types create a tradeoff between instrument strength and

validity in system GMM, where larger gaps in average expected returns between countries of

different types strengthen instruments but at the same time exacerbate moment violations. In the

final experiment in Table A.8, we examine how a trend in the DFI sector’s budget can relax this

tradeoff. In this experiment we revert to default values for µc but make types time-invariant. To

create some instrument strength, we rely on an upward trending budget.7 Again, we start by

considering the model without p̃cit (column 7).

In the differenced equation, fixing types gets rid of moment violations: there is now no rea-

son for dfii,t−2 to be systematically correlated with ∆uit. If the DFI sector’s budget were flat in

expectation over the sample period, there would also be no reason for dfii,t−2 to be correlated

with ∆dfiit. A trend in the DFI budget, however, can generate instrument strength in the differ-

enced equation even with fixed types. This is because high-type countries, who have, on average,

more investable projects, benefit more from an expanding DFI budget than low-type countries,

who have few projects DFIs are willing to invest in. As a result, changes in DFI investment will

be more positive for high-type countries, who also have higher lagged levels of DFI investment.

This results in a situation where Corr
(

dfii,t−2, ∆dfiit

)
> 0 even though Corr

(
dfii,t−2, ∆uit

)
= 0. In

column 7, even without controlling for p̃cit, the median bias in difference GMM disappears.

Interestingly, the same is not the case for levels GMM. Even with fixed types, the greater

increases in DFI investment for high-type countries when the DFI budget trends upward imply a

positive correlation between ∆dfii,t−1 and wi, so that a moment condition for the levels equation

is not satisfied. As a result, both levels and system GMM are biased. This also explains why the

Hansen test for system GMM rejects in every single replication, as one set of moment conditions

(those for the differenced equation) holds while a different set does not. Adding p̃cit again reduces

this bias, but given the obvious violation of some of the moment conditions system GMM relies

on, there is little guarantee that the upward bias in system GMM will always be as low as it is in

column 8, even with fixed types and a positive trend in the budget.

7A similar narrative can be developed for a downward trending budget.
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A.3.3 Results under full additionality

For completeness, we briefly discuss system GMM results under full additionality, where OLS

and FE underestimate the true β = 1. The results are the mirror image of those reported for zero

additionality.

Table A.9: System GMM results with full additionality (β = 1)

(1) (2) (3) (4) (5) (6) (7) (8)
LDV no no no no yes yes yes yes
pc excl. σ2

m = 1 σ2
m = 0.5 σ2

m = 0 excl. σ2
m = 1 σ2

m = 0.5 σ2
m = 0

Med. β̂sysGMM −3.34 0.64 0.93 0.97 −1.46 0.07 0.67 0.93
Std. dev. 2.12 2.20 1.07 0.40 1.50 1.46 0.92 0.41
% reject β > 1 99.5 18.4 9.6 7.4 96.1 37.7 17.1 8.3
Hansen % pass 59.1 87 88.6 91.1 51.3 87 90 90.9
Med. cond. F 27.9 9.63 14.3 14.9 24.2 6.28 7.46 10.2
% reject underid. 97.8 59.2 71.7 74.5 92 30.2 38.1 54.4
Note: see Table A.8. % reject β > 1 is the percentage of replications in which the null of full additionality is rejected at
a 5% significance level. LDV indicates whether a lagged dependent variable is included.

The first column of Table A.9 shows results for default values of the parameters in our DGP,

for a regression without p̃cit. Underidentification is rejected in almost every replication, but

the Hansen test also often rejects and system GMM shows a large downward bias, because the

moment conditions in (A.2) are not satisfied.

Under full additionality, a low-type country receives more DFI investment than a high-type

country, and, through type changes, is more likely to experience an increase in the number of

projects with high expected returns in the future, which would decrease DFI investment. The

consequence is that Corr
(

dfii,t−2, ∆dfiit

)
< 0 and Corr

(
dfii,t−2, ∆uit

)
> 0, leading to a downward

bias.

For the levels equations, if a high-type country moves down types in t − 1, its DFI invest-

ment increases, and, since types are persistent, it is also likely to end up with fewer projects

with high expected returns in period t, implying that Corr
(

∆dfii,t−1, dfiit

)
> 0 but also that

Corr
(

∆dfii,t−1, wi + uit

)
< 0. Even when types are time-invariant, trends in the DFI sector’s

budget can again contribute to violations of the moment conditions in the levels equation, as we

discuss below.

Including p̃cit, especially without measurement error, reduces bias (see columns 2-4 in Table

A.9) as it partially controls for the number of projects with expected returns over 2, weakening

the correlations between instruments and error terms. As was the case under zero additionality,

however, there is nothing inherent about system GMM that removes the bias in the estimation of

β. This conclusion is unaltered when we include a lagged dependent variable in the final four
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columns of Table A.9.

Table A.10: System GMM results with full additionality (β = 1): additional experiments

(1) (2) (3) (4) (5) (6) (7) (8)

Experiment
description

Upward trend
in DFI budget

µc closer
together

µc the
same

Upward trend
in DFI budget,

fixed types
pc excl. σ2

m = 0.5 excl. σ2
m = 0.5 excl. σ2

m = 0.5 excl. σ2
m = 0.5

σdb 0 0 0.15 0.15 0.15 0.15 0 0
drift 0.05 0.05 0 0 0 0 0.05 0.05
µc [0, 2, 4] [0, 2, 4] [1, 2, 3] [1, 2, 3] [2, 2, 2] [2, 2, 2] [0, 2, 4] [0, 2, 4]
∆ types default default default default default default fixed fixed

Med. β̂sysGMM −1.17 0.97 −3.03 0.33 0.40 0.43 −1.03 0.87
Std. dev. 0.24 0.18 5.19 1.90 2.71 1.98 0.31 0.39
% reject β > 1 100 8.3 85.4 16.9 6.4 5.6 100 12.7
Hansen % pass .4 90.2 67.8 91 94 96.9 49.5 87.6
Med. cond. F 52.4 38 9.13 4.83 1.53 1.92 17.4 12.8
% reject underid. 100 100 66.6 29.9 5.1 1.6 100 84.8
Med. β̂di f f GMM −2.82 0.99 −4.48 −0.20 0.33 0.41 0.95 0.96
Med. β̂levGMM −1.71 0.99 −3.84 −0.40 0.42 0.43 −2.81 −0.03
Note: see Table A.8. % reject β > 1 is the percentage of replications in which the null of full additionality is rejected at
a 5% significance level.

The downward bias is still apparent in Table A.10 when we consider an upward trending

budget for the DFI sector (see especially column 1, without p̃cit). Narrowing the gap in aver-

age expected returns between countries of different types (columns 3-4), or even setting µc = 2

regardless of type (columns 5-6), again does not remove the bias in system GMM estimation.

Fixing types and relying on an upward trending budget for instrument strength (columns 7-8)

yields little bias for difference GMM even without controlling for p̃cit, but the same is not true

for levels or system GMM. A plausible reason for why there is still a small amount of bias left in

the difference GMM case, in contrast to the zero additionality case considered earlier, is that the

instruments are less strong here (the median conditional F-statistic is 17.4, compared to 40.3 in

the zero additionality case).

Our DGP creates a forgiving test-bed for difference and system GMM estimators, yet rela-

tively persistent shifts over time in a country’s average expected returns are enough for moment

conditions to be violated and for these estimators to yield unreliable results. Adding other realis-

tic features, like serially correlated shocks to a country’s expected returns or multiple variables to

measure project characteristics, would likely undermine their performance even further. In any

realistic setting, where countries’ investment climates change systematically over time, the GMM

estimators considered in this paper do not provide reliable estimates of the degree of additional-

ity.
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A.4 Firm-level results

Figure A.1: Inferring additionality from firm-level data: additional examples
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(c) Zero additionality, DFI funds > opportunities
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(d) Zero additionality, DFI funds < opportunities

Note: see Figure 1. All figures share the following parameter values: nC = 12 (4 of each type),
T = 1, nI = 500, µc = [0, 2, 4] , σc = [2, 2, 2] , psmin = 2, random selection mechanism. In the top row there is
full additionality: dfilo = 0, dfihi = 2. In Figure A.1a the variance in the non-observable part of expected returns
is higher (σe = 1.5) than in Figure A.1b (σe = 0.1); DB = 0.2 ∗ nC ∗ nI in both figures. In the bottom row there is
zero additionality: dfilo = 2, dfihi = 4. In Figure A.1c the budget is larger (DB = 0.3 ∗ nC ∗ nI) than in Figure A.1d
(DB = 0.1 ∗ nC ∗ nI); σe = 0.1 in both figures.

Figure A.1 gives four additional examples to further illustrate how the approach discussed in

the main text can yield misleading results. Both plots in the top row are from a DGP with full

additionality. Nonetheless, in Figure A.1a it looks as if there is a lot of overlap in the type of

projects DFIs and private investors are interested in, from which a researcher might erroneously

conclude that additionality is low. This is because in this DGP we have assumed a large variance

for the unobserved component of expected returns (σe = 1.5), so that project characteristics are

a less good guide to expected returns. When the variance is lower (σe = 0.1), as in Figure A.1b,

the full additionality of DFI investments reveals itself clearly. In the bottom row, the DGP has

zero additionality. In Figure A.1c DFIs’ budget is large enough (DB = 0.3 ∗ nC ∗ nI) for them to

pick up all the projects they are interested in, which makes it look practically indistinguishable
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from Figure A.1b. As in Figure A.1b, a researcher would conclude that DFI investment is fully

additional, but would in this case be wrong. In contrast, when the DFI budget is curtailed (DB =

0.1 ∗ nC ∗ nI in Figure A.1d), the researcher is likely to correctly conclude that DFI investment

is not additional. That two completely different additionality scenarios can give rise to similar

patterns in the data (Figures A.1b and A.1c, as well as Figures A.1a and A.1d) clearly shows the

problems associated with inferring additionality from firm-level data.
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